1,687 research outputs found

    A New Measurement of Cosmic Ray Composition at the Knee

    Full text link
    The Dual Imaging Cerenkov Experiment (DICE) was designed and operated for making elemental composition measurements of cosmic rays near the knee of the spectrum at several PeV. Here we present the first results using this experiment from the measurement of the average location of the depth of shower maximum, , in the atmosphere as a function of particle energy. The value of near the instrument threshold of ~0.1 PeV is consistent with expectations from previous direct measurements. At higher energies there is little change in composition up to ~5 PeV. Above this energy is deeper than expected for a constant elemental composition implying the overall elemental composition is becoming lighter above the knee region. These results disagree with the idea that cosmic rays should become on average heavier above the knee. Instead they suggest a transition to a qualitatively different population of particles above 5 PeV.Comment: 7 pages, LaTeX, two eps figures, aas2pp4.sty and epsf.sty included, accepted by Ap.J. Let

    Tunneling Anisotropic Magnetoresistance in Co/AlOx/Au Tunnel Junctions

    Full text link
    We observe spin-valve-like effects in nano-scaled thermally evaporated Co/AlOx/Au tunnel junctions. The tunneling magnetoresistance is anisotropic and depends on the relative orientation of the magnetization direction of the Co electrode with respect to the current direction. We attribute this effect to a two-step magnetization reversal and an anisotropic density of states resulting from spin-orbit interaction. The results of this study points to future applications of novel spintronics devices involving only one ferromagnetic layer.Comment: 11 pages, 5 figures. Accpted for publishing on Nano Letters, 200

    Comparing VHF coherent scatter from the radar aurora with incoherent scatter and all-sky auroral imagery

    Get PDF
    VHF coherent scatter radar observations of an auroral substorm over Alaska are analyzed in the context of multibeam incoherent scatter plasma density and drifts data and green-line all-sky optical imagery. Coherent scatter arises from Farley Buneman waves which are excited in theEregion whenever the convection electric field is greater than about 20 mV/m. Aperture synthesis radar imaging and other aspects of the methodology facilitate the precise spatial registration of the coherent scatter with coincident optical and incoherent scatter radar measurements. Discrete auroral arcs were found to separate diffuse regions of coherent backscatter and, sometimes, to align with the boundaries of those regions. At other times, auroral arcs and torches lined up adjacent to discrete, structured regions or radar backscatter. Drastic variations in the Doppler shifts of the coherent scatter from one side of the auroral forms to the other suggest the presence of field-aligned currents. An empirical formula based on previous studies but adapted to account approximately for the effects of wave turning was used to estimate the convection electric field from the moments of the coherent scatter Doppler spectra. Line-of-sightF region plasma drift measurements from the Poker Flat Incoherent Scatter Radar (PFISR) were found to be in reasonable agreement with these convection field estimates. Reasons why the empirical formulas may be expected to hold are discussed

    Multiwavelength Observations of a Flare from Markarian 501

    Get PDF
    We present multiwavelength observations of the BL Lacertae object Markarian 501 (Mrk 501) in 1997 between April 8 and April 19. Evidence of correlated variability is seen in very high energy (VHE, E > 350 GeV) gamma-ray observations taken with the Whipple Observatory gamma-ray telescope, data from the Oriented Scintillation Spectrometer Experiment of the Compton Gamma-Ray Observatory, and quicklook results from the All-Sky Monitor of the Rossi X-ray Timing Explorer while the Energetic Gamma-Ray Experiment Telescope did not detect Mrk 501. Short term optical correlations are not conclusive but the U-band flux observed with the 1.2m telescope of the Whipple Observatory was 10% higher than in March. The average energy output of Mrk 501 appears to peak in the 2 keV to 100 keV range suggesting an extension of the synchrotron emission to at least 100 keV, the highest observed in a blazar and ~100 times higher than that seen in the other TeV-emitting BL Lac object, Mrk 421. The VHE gamma-ray flux observed during this period is the highest ever detected from this object. The VHE gamma-ray energy output is somewhat lower than the 2-100 keV range but the variability amplitude is larger. The correlations seen here do not require relativistic beaming of the emission unless the VHE spectrum extends to >5 TeV.Comment: 10 pages, 2 figures, accepted for publication in ApJ Letter

    New Limits to the Infrared Background: Bounds on Radiative Neutrino Decay and on Contributions of Very Massive Objects to the Dark Matter Problem

    Get PDF
    From considering the effect of γ-γ interactions on recently observed TeV gamma-ray spectra, improved limits are set to the density of extragalactic infrared photons which are robust and essentially model independent. The resulting limits are more than an order of magnitude more restrictive than direct observations in the 0.025–0.3 eV regime. These limits are used to improve constraints on radiative neutrino decay in the mass range above 0.05 eV and to rule out very massive objects as providing the dark matter needed to explain galaxy rotation curves. Lower bounds on the maximum distance which TeV gamma rays may probe are also derived

    Near-Infrared Synchrotron Emission from Cas A

    Full text link
    High energy observations of Cas A suggested the presence of synchrotron radiation, implying acceleration of cosmic rays by young supernova remnants. We detect synchrotron emission from Cas A in the near-infrared using Two Micron All Sky Survey (2MASS) and Palomar 200 inch PFIRCAM observations. The remnant is detected in J, H, and Ks bands, with Ks band brightest and J faint. In the J and H bands, bright [Fe II] lines (1.24um and 1.64um) are detected spectroscopically. The Palomar observations include Ks continuum, narrow-band 1.64um (centered on [Fe II]) and 2.12um (centered on H2(1-0)) images. While the narrow-band 1.64um image shows filamentary and knotty structures, similar to the optical image, the Ks image shows a relatively smooth, diffuse shell, remarkably similar to the radio image. The broad-band near-infrared fluxes of Cas A are generally consistent with, but a few tens of percent higher than, an extrapolation of the radio fluxes. The hardening to higher frequencies is possibly due to nonlinear shock acceleration and/or spectral index variation across the remnant. We show evidence of spectral index variation. The presence of near-infrared synchrotron radiation requires the roll-off frequency to be higher than 1.5e14 Hz, implying that electrons are accelerated to energies of at least 0.2 TeV. The morphological similarity in diffuse emission between the radio and Ks band images implies that synchrotron losses are not dominant. Our observations show unambiguous evidence that the near-infrared Ks band emission of Cas A is from synchrotron emission by accelerated cosmic-ray electrons.Comment: accepted by Ap

    Two-neutron transfer reaction mechanisms in 12^{12}C(6^6He,4^{4}He)14^{14}C using a realistic three-body 6^{6}He model

    Get PDF
    The reaction mechanisms of the two-neutron transfer reaction 12^{12}C(6^6He,4^4He) have been studied at 30 MeV at the TRIUMF ISAC-II facility using the SHARC charged-particle detector array. Optical potential parameters have been extracted from the analysis of the elastic scattering angular distribution. The new potential has been applied to the study of the transfer angular distribution to the 22+^+_2 8.32 MeV state in 14^{14}C, using a realistic 3-body 6^6He model and advanced shell model calculations for the carbon structure, allowing to calculate the relative contributions of the simultaneous and sequential two-neutron transfer. The reaction model provides a good description of the 30 MeV data set and shows that the simultaneous process is the dominant transfer mechanism. Sensitivity tests of optical potential parameters show that the final results can be considerably affected by the choice of optical potentials. A reanalysis of data measured previously at 18 MeV however, is not as well described by the same reaction model, suggesting that one needs to include higher order effects in the reaction mechanism.Comment: 9 pages, 9 figure
    • …
    corecore